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On the rise velocity of an interactive bubble in liquids
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Abstract

Bubble rise velocity is one of the important parameters characterizing bubble column systems. Mathematical models for predicting the
velocity of an interactive spherical bubble rising in-line in liquids for intermediate Reynolds number range [Re ∼O(100)] are developed
in the present study. The equation for the balance of forces on a bubble rising in-line is formulated. The models are derived based on this
equation and different assumptions for the forces on the bubble. The ratios of the rise velocity of the trailing bubble to that of an isolated
bubble, varying with the separation distance between the leading and trailing bubbles, are predicted by these models atRe of 35.4, 21.5 and
3.06. Comparisons between the predictions and the measurements show that the model incorporating both the wake effect and the bubble
acceleration effect which includes the added mass and Basset forces can well predict the rise velocity of the trailing bubble in the far wake
region of the leading bubble. The commonly used model which accounts for only the wake effect is found to lead to an overestimation of
the rise velocity of the trailing bubble.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Bubble–liquid systems; Bubble rise velocity; Bubble wake; Bubble–bubble interaction; Basset force

1. Introduction

Bubble columns are commonly encountered in chemical,
petrochemical, biochemical, metallurgical, environmental,
and other processing applications. The investigations of the
hydrodynamic behavior of bubble columns involve both the
macroscopic or large-scale phenomena and the microscopic
or local phenomena, which include the flow regime, gross
liquid circulation, phase holdup, interfacial phenomena,
mean flow and turbulence quantities, transport coefficients,
bubble rise characteristics, etc. The knowledge of these
phenomena is essential for a better understanding and suc-
cessful design and operation of bubble column systems.
Among them, the bubble rise velocity is an important pa-
rameter characterizing the bubble behavior. Much attention
has been paid to its investigation[1–3].

Most of the previous researches on the bubble rise veloc-
ity were conducted on single isolated bubbles. It is readily
acknowledged that the hydrodynamic behavior of an individ-
ual bubble in a gas–liquid system generally differs from that
of a single isolated bubble due to interactions with its neigh-
boring bubbles. However, the mechanism of bubble–bubble
interactions is extremely complex; a full understanding
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has not yet been reached. The bubbles rising in-line or the
bubble chain is a specific but typical case where mutual
interactions between bubbles are evident. In this particular
case, the wake of the leading bubble is found to be a primary
factor leading to the interactions between the trailing and
leading bubbles, which could significantly change the bub-
ble rise velocity and affect the bubble shape, bubble coales-
cence and breakup, and in turn affect bubble residence time,
bubble size distribution, and gas–liquid interfacial area. A
quantitative description of the velocity of the bubbles rising
in-line could provide not only a basic understanding of the
bubble–bubble interaction mechanism but also a prelimi-
nary estimation of the bubble rise velocity in general bubble
column systems.

Crabtree and Bridgwater[4] measured the bubble posi-
tions and bubble coalescence time for the relative motion
of two vertically aligned spherical-cap bubbles of different
diameters at Reynolds numbers (Re) of 40–90 in a 67 wt.%
solution of sucrose in water. A theory based on the wake ve-
locity was proposed to predict the bubble coalescence time.
de Nevers and Wu[5] conducted a similar study on the coa-
lescence of spherical-cap bubbles of 1–2 cm diameters rising
in glycerin and in water. A simplified model with different
assumptions on the wake configurations was proposed for
predicting the bubble coalescence time. Marks[6] measured
the terminal velocity of air bubbles of equivalent diameters
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Nomenclature

Cd drag coefficient of an interactive bubble
Cd0 drag coefficient of an isolated bubble
d bubble diameter (m)
FA added mass force (N)
FB Basset force (N)
Fd drag force of an interactive bubble (N)
Fd0 drag force of an isolated bubble (N)
Fg buoyancy force (N)
Fj force component of a bubble (N)
g gravitational acceleration (m s−2)
p static pressure of liquid (Pa)
Re bubble Reynolds number based on its

terminal velocity
Retr Reynolds number of the trailing bubble
Re0 Reynolds number of an isolated bubble
t time (s)
t0 reference time (s)
U local liquid velocity (m s−1)
Ū radially averaged wake velocity over the

frontal area of the trailing bubble (m s−1)
Ub rise velocity of an interactive bubble (m s−1)
Ub0 rise velocity of an isolated bubble (m s−1)
U0 incoming liquid velocity (m s−1)
x axial coordinate, separation distance between

the rear surface of the leading bubble and
the frontal surface of the trailing bubble (m)

�x integration interval (m)

Greek letters
α, β coefficients
µ dynamic viscosity of liquid (kg m−1 s−1)
v kinematic viscosity of liquid (m2 s−1)
ρ liquid density (kg m−3)
ρb bubble density (kg m−3)
� time (s)
�τ time interval (s)

Subscript and superscript
i difference node
∗ non-dimensional quantity

of 0.12–1.9 cm rising in a chain through distilled water,
tap water and sugar water. A model based on the turbulent
wake velocity was employed to correlate the measured data.
Narayanan et al.[7] measured the rise velocity of air bubble
pair in aqueous glycerin solutions atRe of 0.5–80. Differ-
ent equations which follow Stimson–Jeffery’s[8] creeping
flow analysis and the measured wake flow structure were
developed to predict the rise velocity ratio of the bubble
pair for Re < 7 andRe > 7, respectively. Omran and Foster
[9] measured the terminal velocities of chains of spherical
air bubbles in aqueous glycerin solutions for the ranges of
Re < 1 and 1< Re < 9 and bubble diameters from 1.4 to

3 mm. In their study, Sonshine and Brenner’s analysis[10]
for the motion of a chain of particles atRe < 1 was validated
and extended to the analysis of the chain motion of bubbles
at 1 < Re < 9. Bhaga and Weber[11] measured the wake
velocity behind a single spherical-cap air bubble and visu-
alized the in-line motion of two bubbles rising in aqueous
sugar solutions. The rise velocity of the trailing bubble was
predicted from their modified wake velocity correlation plus
the bubble terminal velocity in isolation and the criterion for
bubble coalescence was provided for 10< Re < 100. Ko-
masawa et al.[12] investigated experimentally the dynamic
behavior of a single and a pair of spherical-cap air bubbles
held stationary in downward flows of deionized water and
water–jelly solutions for theRe range of 10–104. The addi-
tional velocity component of the trailing bubble caused by
the laminar wake of the leading bubble was found to be equal
to the velocity difference between the wake and the main
liquid flow. Miyahara et al.[13] studied both experimentally
and analytically the velocity distribution induced in aqueous
glycerin and glycerin–ethanol solutions by a chain of air
bubbles, together with the shape and wake volume of the
bubble chain over the range of bubble equivalent spherical
diameters of 0.214–2.37 cm. The rise velocity of chain bub-
bles was estimated by utilizing the laminar/turbulent wake
velocity and the results of drag coefficient and shape of sin-
gle bubbles. Katz and Meneveau[14] visualized the motion
of a train of spherical air bubbles in stagnant water atRe
ranging from 0.2 to 35. A model based on the known flow
field and wake structure around a single bubble was devel-
oped to predict the rise velocities of interactive bubble pairs.

Yuan and Prosperetti[15] numerically studied the in-line
motion of two equal spherical bubbles in a viscous fluid by
solving the full unsteady Navier–Stokes equations forRe up
to 200. The detailed flow structures around the bubbles, rise
velocities of the bubbles, separation distance between them,
and viscous drag and potential forces acting on them were
predicted. The results show that the wake of the leading bub-
ble strongly influences the flow structure around the trailing
bubble, but the leading bubble itself is little affected. The
two bubbles rising in-line gradually approach and finally
reach an equilibrium distance, at which the wake effect and
the pressure gradient balance. The existence of such a dis-
tance is in contrast with experimental findings, which may
come from assuming no bubble deformation in the numeri-
cal simulation.

The aforementioned analytical or semi analytical models
for bubble motion mostly assume that the rise velocity of
a bubble in a chain is the sum of the wake velocity of bub-
bles ahead of it and its rise velocity in isolation. Komasawa
et al.’s model [12] assumes that the bubble rise veloc-
ity is equal to the main liquid velocity plus an additional
velocity as indicated above, due to their downward flow
and stationary bubble conditions. The model by Katz and
Meneveau[14] further accounts for the effect of pressure
gradients caused by the presence of neighboring bubbles on
the bubble motion. It is noted that the formulations of these
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models have never been rigorously derived, which hinders
their general application. Also none of these models ac-
count for the acceleration effect of an interactive bubble,
which could be significant for bubble–liquid systems. The
present paper starts from the balance equation for the forces
acting on a spherical bubble rising in a chain in liquids,
based on which mathematical models for the rise velocity
of an interactive bubble are derived. The semi analytical
expression for the drag force ratio of an interactive sphere
in intermediateRe range, which was developed by the au-
thors[16], is extended to the bubble case and utilized in the
model formulation. The added mass and Basset forces act-
ing on a bubble due to its accelerated motion are taken into
account in the models. The rise velocity ratios predicted by
the present models are compared with the measured data of
Katz and Meneveau[14].

2. Forces on an interactive bubble

Consider a two-bubble or multi-bubble system rising
in-line in a quiescent liquid, as schematically shown in
Fig. 1. In the analysis, it is assumed that (1) the Weber
number (We) is much smaller than 1 where no bubble defor-
mation occurs and the bubbles adopt a spherical shape with
an identical diameter ofd; (2) the bubble Reynolds number
(Re) is in the order of 100 and the wake flow behind a bub-
ble is laminar, axisymmetric, and in steady state (no wake
shedding); (3) the downstream trailing bubble is located in
the far wake region of the upstream leading bubble; (4) the

Fig. 1. Schematic flow pattern of two interactive bubbles due to wake
attraction.

presence of the downstream bubbles has negligible effects
on the upstream flow conditions. Due to the attraction by
the leading bubble wake, the trailing bubble experiences
significant acceleration in its motion and finally coalesces
with the leading bubble in the absence of surfactants; on
the other hand, the motion of the leading bubble is almost
unaffected by the trailing bubble located in its far wake
region, as observed in a number of experiments mentioned
previously. The forces acting on the trailing bubble during
its accelerated motion are not only the drag and buoyancy as
in the case of a single isolated bubble rising at its terminal
velocity. Other forces, such as the inertia, pressure gradient,
added mass, and Basset forces, should also be taken into
account.

The balance equation for the forces acting on the trailing
bubble rising in-line with the leading bubble can thus be
written as

1

6
πd3ρb

dUb

dt
= Fg + Fd + Fp + FA + FB (1)

where the terms on the right-hand side of the equation de-
note the buoyancy, drag, pressure gradient, added mass, and
Basset forces in sequence.

As seen inFig. 1, the positive direction ofx-coordinate
is vertically upward. The buoyancy force for the spherical
bubble is expressed as

Fg = 1
6πd3(ρ − ρb)g (2)

The drag force on the trailing bubble,Fd, is different from
that on a single isolated bubble,Fd0, due to the effect of
bubble wake. The local liquid velocity encountered by the
trailing bubble can be equated to the radially averaged wake
velocity over its exposed frontal area,Ū, which is taken at
the frontal section of the trailing bubble. The drag force of
the trailing bubble can thus be written as

Fd = −Cd
π

8
ρd2(Ū − Ub)

2 (3)

whereCd andUb are, respectively, the drag coefficient and
rise velocity of the interactive trailing bubble. If the trailing
bubble is isolated in a liquid with uniform incoming velocity
of U0, the expression for its drag force becomes

Fd0 = −Cd0
π

8
ρd2(U0 − Ub0)

2 (4)

where Cd0 and Ub0 are, respectively, the drag coefficient
and rise velocity of a single isolated bubble. The drag force
ratio, Fd/Fd0, is obtained fromEqs. (3) and (4)as

Fd

Fd0
= Cd

Cd0

(
Ū − Ub

U0 − Ub0

)2

(5)

The ratio of the drag coefficients,Cd/Cd0, is further assumed
to be equal to the ratio of theRe of an isolated bubble to the
Re based on the relative velocity between the local wake flow
and the trailing bubble. This assumption has been verified
for the case of particles aligned in tandem in a flow field
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for particle Re in the order of 100[16]. It is extended to
the present case of interactive bubbles. The expression for
Cd/Cd0 is then given as

Cd

Cd0
= Re0

Retr
= U0 − Ub0

Ū − Ub
(6)

whereRe0 andRetr are theRe of the isolated bubble and the
trailing bubble, respectively. SubstitutingEq. (6)into Eq. (5)
yields

Fd

Fd0
= Ū − Ub

U0 − Ub0
(7)

or

Fd

Fd0
= Ū − Ub0

U0 − Ub0
+ Ub0 − Ub

U0 − Ub0
(8)

It is noted thatU0 = 0 for the present case. Employing the
analytical expression for the averaged wake velocity distri-
bution in dimensionless form[16] for the first term on the
right-hand side ofEq. (8), the equation becomes

Fd

Fd0
= Ub

Ub0
− Cd0

2

[
1 − exp

(
−Re0d

16x

)]
(9)

whereRe0 = Ub0d/ν and x is the separation distance be-
tween the rear surface of the leading bubble and the frontal
surface of the trailing bubble.

The analytical expressions for the pressure gradient, added
mass and Basset forces are obtained for a single isolated
bubble under the creeping flow condition. Here they are ex-
tended directly to the case of an interactive bubble at higher
Re. The liquid is assumed to be pure and free of surfactants.
The expressions for these forces are given, respectively, as
below [17]

Fp = −π

6
d3�p (10)

FA = π

12
d3ρ

d

dt
(U − Ub) (11)

FB = d2√πρµ

∫ t

t0

d(U − Ub)/dτ√
t − τ

dτ (12)

where d/dt denotes the substantial derivative following the
bubble motion. For the present case of quiescent liquid, it is
noted that dU/dt = 0. The trailing bubble is assumed to be
located in the far wake region of the leading bubble. Over
this region, the pressure gradient is negligible, i.e.,∇p 	 0,
which results inFp = 0. The expressions for the added mass
and Basset forces,Eqs. (11) and (12), are then reduced to

FA = − π

12
d3ρ

dUb

dt
(13)

FB = −d2√πρµ

∫ t

t0

dUb/dτ√
t − τ

dτ (14)

Compared with the added mass force, the inertia force
on the left-hand side ofEq. (1) is negligible sinceρb 


ρ for bubble–liquid systems. Finally, the total force acting
on the trailing bubble is a balance of the buoyancy, drag,
added mass and Basset forces. The balance equation can be
expressed as

1

12
πd3ρ

dUb

dt

= 1

6
πd3ρg +

{
Ub

Ub0
− Cd0

2

[
1 − exp

(
−Re0d

16x

)]}

× Fd0 − d2√πρµ

∫ t

t0

dUb/dτ√
t − τ

dτ (15)

Note that for a single isolated bubble rising at its terminal
velocity, Ub0, the drag force,Fd0, is balanced only by the
buoyancy force,Fg, i.e.

Fd0 = −1
6πd3ρg (16)

SubstitutingEq. (16)into Eq. (15)yields

dUb

dt
= 2g

{
1 − Ub

Ub0
+ Cd0

2

[
1 − exp

(
−Re0d

16x

)]}

− 12

d

√
ν

π

∫ t

t0

dUb/dτ√
t − τ

dτ (17)

By introducing the following non-dimensional quantities

U∗
b = Ub

Ub0
, t∗ = tUb0

d
, τ∗ = τUb0

d
, x∗ = x

d

(18)

Eq. (17)can be given in a non-dimensional form as

dU∗
b

dt∗
= 2gd

U2
b0

{
1 − U∗

b + Cd0

2

[
1 − exp

(
− Re0

16x∗

)]}

− 12√
πRe0

∫ t∗

t∗0

dU∗
b/dτ∗

√
t∗ − τ∗ dτ∗ (19)

3. Models for the rise velocity of an interactive bubble

Eq. (19)provides a general differential–integral equation
of motion for an interactive spherical bubble rising in-line
in a quiescent liquid. Based on this equation and different
assumptions for the forces acting on the bubble, different
mathematical models describing the rise velocity of the trail-
ing bubble can be derived.

Model I. The motion of the trailing bubble is assumed to be
in quasi-steady state. The bubble acceleration effect in terms
of the added mass and Basset forces is thus neglected. Only
the wake effect is accounted for in the equation of bubble
motion. The resultant equation simplified fromEq. (19) is
the balance of only the buoyancy and drag forces. The rise
velocity of the trailing bubble can be directly obtained as

U∗
b = 1 + Cd0

2

[
1 − exp

(
− Re0

16x∗

)]
(20)
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It is easily seen that the bubble rise velocity given inEq. (20)
is equal to the single bubble rise velocity plus the averaged
liquid wake velocity. This equation is similar to those ob-
tained by other researchers mentioned previously. It should
be noted thatEq. (20)is a result of neglecting the accelera-
tion effect of the bubble motion in the wake region.

Model II. The bubble acceleration effect is taken into
account but the Basset force is assumed to be negligible for
simplicity in the equation of bubble motion. The buoyancy
force acting on the trailing bubble is balanced by the drag
and added mass forces under this assumption. It is noted
that for the in-line approaching motion of the trailing bub-
ble towards the leading bubble, dU∗

b/dt∗ = −U∗
b dU∗

b/dx∗.
Eq. (19)is then reduced into an ordinary differential equa-
tion as given below

U∗
b

dU∗
b

dx∗ = 2gd

U2
b0

{
U∗

b − 1 − Cd0

2

[
1 − exp

(
− Re0

16x∗

)]}

(21)

Its boundary condition isU∗
b = 1 at x∗ → ∞. Eq. (21)is

numerically solved using a finite difference method to yield
the bubble rise velocity,U∗

b, varying with the separation
distance between the two bubbles,x∗.

Model III. Both the wake effect and the bubble accelera-
tion effect including the added mass and Basset forces are
taken into account in the model. The equation of bubble
motion, i.e.,Eq. (19), can be rewritten as

U∗
b

dU∗
b

dx∗ = 2gd

U2
b0

{
U∗

b − 1 − Cd0

2

[
1 − exp

(
− Re0

16x∗

)]}

+ 12√
πRe0

∫ t∗

t∗0

dU∗
b/dτ∗

√
t∗ − τ∗ dτ∗ (22)

which satisfies the boundary conditions:U∗
b = 1 and

dU∗
b/dx∗ = 0 at x∗ → ∞. The finite difference method

is utilized to numerically solveEq. (22). The term on the
left-hand side ofEq. (22) is discretized by the following
first-order difference scheme:(

dU∗
b

dx∗

)
i

= U∗
b,i − U∗

b,i−1

�x∗
i

(23)

where �x∗
i = x∗

i − x∗
i−1. The Basset force term on the

right-hand side ofEq. (22)is numerically integrated by the
Euler formula. To avoid singularity of the integrand atτ∗ =
t∗i , the value of the integrand at any time interval�τ∗

k (=
t∗k − t∗k−1, k = 1, 2, . . . , i) is evaluated atτ∗ = t∗k−1. Thus
the Basset force term can be explicitly calculated in the
resultant difference equation, which is given as below

U∗
b,i

U∗
b,i − U∗

b,i−1

�x∗
i

− 2gd

U2
b0

U∗
b,i

= −2gd

U2
b0

{
1 + Cd0

2

[
1 − exp

(
− Re0

16x∗

)]}

+ 12√
πRe0

∫ t∗i

t∗0

dU∗
b/dτ∗√

t∗i − τ∗ dτ∗ (24)

U∗
b,i can be solved fromEq. (24)and given in an explicit

form as

U∗
b,i = 0.5

(
α +

√
α2 − 4β

)
(25)

where

α = U∗
b,i−1 + �x∗

i

2gd

U2
b0

(26)

and

β = �x∗
i

2gd

U2
b0

{
1 + Cd0

2

[
1 − exp

(
− Re0

16x∗

)]}

− �x∗
i

12√
πRe0

∫ t∗i

t∗0

dU∗
b/dτ∗√

t∗i − τ∗ dτ∗ (27)

To minimize numerical errors caused by the first-order
difference scheme and the Euler integration formula, suf-
ficiently fine integration intervals (�x∗

i ) are adopted in the
calculation. The obtained results should not dependent on
the specific integration intervals.

4. Results and discussion

To validate the mathematical models proposed above, the
ratios of the rise velocity of the trailing bubble to that of
an isolated bubble which vary with the separation distance
between the leading and trailing bubbles are calculated by
Models I–III. The obtained results are compared with the
experimental data of Katz and Meneveau[14]. Their data
were measured from spherical air bubble pairs rising in
distilled water at small Eötvös numbers (Eo < 0.3). The
wall effects are negligible for their measurements since
the bubble sizes are much smaller than the chamber width.
The model calculations are conducted for three cases of
bubble pair motion atRe of 35.4, 21.5 and 3.06, which
are identical to the experimental conditions. The spherical
bubble diameters,d, for these three cases are 475, 349 and
158�m, respectively. The corresponding single bubble rise
velocities,Ub0, were measured to be 75, 62 and 19.5 m s−1,
respectively. Based on the relationship,Cd0 = 4gd/3U2

b0,
and these data, the drag coefficients of the single isolated
bubbles are obtained as 1.10, 1.19 and 5.43 for the three
cases, respectively. The above data forUb0 and Cd0 are
used in the present model calculation.

Figs. 2–4show the variations of the rise velocity ratio of
the trailing bubble with the separation distance calculated
by Models I–III atRe of 35.4, 21.5 and 3.06, respectively.
The measured data of Katz and Meneveau[14] are also pre-
sented in these figures for comparison. Models II and III
are calculated using the finite difference method described
above. Equal dimensionless integration intervals (�x∗

i ) of
both 0.05 and 0.025 are adopted in the calculations. The
differences between the results for these two integration in-
tervals are found to be minor. The results reported here are
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Fig. 2. Rise velocity ratio of the trailing bubble ofd = 475�m.

those for the integration interval�x∗
i = 0.05. Although the

models are valid only in the far wake region of the lead-
ing bubble (x∗ > 2), the calculations are still extended
to the near wake region of the leading bubble where the
pressure gradient force should not be neglected. The calcu-
lated results for the whole wake region are presented in the
figures.

As shown inFigs. 2–4, all the three models can predict
the general trend of the rise velocity of the trailing bubble
varying with the separation distance between the two bub-
bles. The rise velocity of the trailing bubble increases with
decreasing bubble separation distance. It is always larger
than the rise velocity of a single isolated bubble due to the
wake attraction. However, the discrepancies between the
predictions via Model I and the measured data are evident.

Fig. 3. Rise velocity ratio of the trailing bubble ofd = 349�m.

It is seen that Model I overestimates the rise velocity of the
trailing bubble in comparison with the test data. This result
is deemed due to the neglect of the bubble acceleration ef-
fect. Thus Model I, which has been commonly used in the
aforementioned literature and accounts for the wake effect
only, can be utilized only as a first-order approximation for
the rise velocity of the trailing bubble. Nevertheless, this
model is easy for engineering applications due to simplicity
of the form.

For achieving a better prediction of the rise velocity of
the trailing bubble, the bubble acceleration effect should be
taken into account. Model II incorporates the wake effect
and the added mass force, the latter accounts for part of
the acceleration effect. It is seen fromFigs. 2–4that the
predictions with Model II are improved over those with
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Fig. 4. Rise velocity ratio of the trailing bubble ofd = 158�m.

Model I and the former are closer to the measured data
than the latter. The improvement is more obvious as the
separation distance between the bubbles decreases. It is also
more evident for the bubbles of larger diameters. However,
the discrepancies between the predictions and the measured
data still exist for Model II, as seen in the figures.

As shown inFigs. 2–4, the best agreement between the
prediction and the measured data is achieved with Model
III, which accounts for both the wake effect and the bub-
ble acceleration effect including the added mass and Basset
forces. The agreement even extends to the near wake region
of the leading bubble and beyond the scope where the model
assumptions are valid, as seen inFigs. 2 and 3. The improve-

Fig. 5. Drag, added mass and Basset forces of the trailing bubble ofd = 349�m.

ment of Model III over Models I and II in predicting the
rise velocity of the trailing bubble is more evident for larger
bubbles and smaller separation distances. The results shown
here indicate that the wake effect as well as the bubble ac-
celeration effect should be take into account to properly de-
scribe the in-line motion of the trailing bubble in the far wake
region of the leading bubble. Both the added mass force and
the Basset force are not negligible and are important for de-
scribing the accelerated motion of bubbles in liquids.

Fig. 5 shows the drag, added mass, and Basset forces
for the trailing bubble of diameter of 349�m, varying with
the separation distance between the two bubbles. The forces
shown in the figure are calculated based on Model III and
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are non-dimensionalized by the drag force of the single iso-
lated bubble of the same diameter. It is seen that the drag
force decreases with decreasing bubble separation distance,
whereas both the added mass force and the Basset force in-
crease with decreasing separation distance. Although the to-
tal resistant force on the trailing bubble, which is the sum
of the drag, added mass and Basset forces, remains constant
during its motion, the reduction in the drag force as the trail-
ing bubble approaches the leading bubble is predicted by the
present model. As seen inFig. 5, the drag, added mass, and
Basset forces take up about 87, 3 and 10% of the total re-
sistant force, respectively, at the separation distancex∗ = 2.
This result indicates that even though the drag force dom-
inates the total resistance force for the bubble accelerated
motion, the added mass and Basset forces should not be ne-
glected in the far wake region of the leading bubble. One
possible reason responsible for this is that the density ratio
of liquid to bubble is high for bubble–liquid systems.

5. Concluding remarks

Three mathematical models for predicting the in-line rise
velocity of an interactive spherical bubble in theRe range
in the order of 100 [Re ∼O(100)] are developed, based on
different assumptions for the balance equation of the forces
acting on the bubble. A comparison of the predicted re-
sults by the three models with the measured data shows that
the general trend of the rise velocity of the trailing bubble
increasing with decreasing bubble separation distance can
be predicted by these models. However, the predictions by
Model I can be used only as an estimation of the rise ve-
locity of the trailing bubble. Models II and III improve the
predictions over Model I. The predictions by Model III are
found to agree best with the measurements among the three
models. The present results indicate that both the wake ef-
fect and the bubble acceleration effect should be taken into
account in analyzing the motion of the trailing bubble in the
far wake region of the leading bubble. The added mass and

Basset forces are not negligible for the accelerated motion
of bubbles in liquids.
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